HINDUSTHAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) (Approved by AICTE, New Delhi, Accredited by NAAC with 'A' Grade) Coimbatore - 641 032. # M.E APPLIED ELECTRONICS Curriculum & Syllabus 2020-2021 # **VISION AND MISSION OF THE INSTITUTION** # **VISION** To become a premier institution by producing professionals with strong technical knowledge, innovative research skills and high ethical values. # **MISSION** IM1: To provide academic excellence in technical education through novel teaching methods. IM2: To empower students with creative skills and leadership qualities. IM3: To produce dedicated professionals with social responsibility. Chairman - BoS EEE - HiCET COLLEGE CASCARGE & 1/C # **VISION AND MISSION OF THE DEPARTMENT** # **VISION** To become a Centre of Excellence in Electrical and Electronics Engineering, in every facet of Engineering Education. # **MISSION** - M1. Provide a solid foundation in basic science, mathematics and engineering fundamentals enhancing the student's capability to identify, formulate, analyze and develop solutions for Engineering problems. - M2. Create an ambiance for the students to develop and flourish their technical skills, design knowledge and innovative ideas to address the environmental issues and sustainable development of the society. - M3. Inculcate moral values and leadership qualities to meet the challenges of life with courage and confidence. Chairman - BoS EEE - HICET Chairman College Of E # **PROGRAM OUTCOMES (POs)** # Engineering Graduates will be able to: - PO 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - PO 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - PO 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. - PO 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. - PO 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. Chairman Chairman - Bos EEE - HiCET - PO 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - PO 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. - PO 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - PO 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. - PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. - PO11.**Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. PO12.Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change coulege. airman - Bos EE - HiCar Chairman Light Span Chairman C # PROGRAM SPECIFIC OUTCOMES (PSOs) - PSO 1. To analyze, design and implement solutions for simple and complex engineering problems that are economically feasible, eco-friendly and socially acceptable solutions in the field of Applied Electronics. - PSO 2. To apply research and project management skills in Applied Electronics domain concerned with communication system by employing recent technologies. # PROGRAM EDUCATIONAL OBJECTIVES (PEOs) - PEO 1. To enable graduates to develop solutions to real world problems in the frontier areas of Applied Electronics. - PEO 2. To enable the graduates to adapt to the latest trends in technology through self-learning and to pursue research to meet out the demands in industries and Academia. - PEO 3. To enable the graduates to exhibit leadership skills and enhance their abilities through lifelong learning. Chairman Die Chairman - Bos EEE - HiCET COLLEGE OF CHICAGO & STORY # **VISION AND MISSION OF THE INSTITUTION** # **VISION** To become a premier institution by producing professionals with strong technical knowledge, innovative research skills and high ethical values. # **MISSION** IM1: To provide academic excellence in technical education through novel teaching methods. IM2: To empower students with creative skills and leadership qualities. IM3: To produce dedicated professionals with social responsibility. Chairman College & Ford Chairman - BoS EEE - HiCET COLLEGE OF CHICAGO & ICE # **CURRICULUM** # Hindusthan College of Engineering and Technology (An Autonomous Institution, Affiliated to Anna University, Chennai Approved by AICTE, New Delhi& Accredited by NAAC with 'A' Grade), Coimbatore, Tamil Nadu. # DETAILS OF CHANGES CARRIED OUT IN CURRICULUM & SYLLABUS CBCS PATTERN POSTGRADUATE PROGRAMMES ## M.E APPLIED ELECTRONICS - R2020 For the students admitted during the academic year 2020-2021 and onwards #### SEMESTER I | S.No. | Course
Code | Course Title | Category | L | T | P | C | CIA | ESE | TOTAL | | | |----------------|----------------|---|---------------------------------------|---|---|------|----|-----|----------|-------|--|--| | | | TH | EORY | | | | | | | | | | | 1 | 20MA1102 | Advanced Mathematics for
Electrical and Electronics
Engineering | BS | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | 2 | 20AE1201 | Advanced Digital System Design | PC | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | 3 | 20AE1202 | Embedded System Design | PC | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | 4 | 20AE1203 | Digital Image Processing | igital Image Processing PC 3 0 0 3 40 | | | | 40 | 60 | 100 | | | | | 5 | 20AE1204 | Research Methodology | PC | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | | | PRAC | CTICAL | | | | | | | | | | | 6 | 20AE1001 | Electronic System Design
Laboratory | PC | 0 | 0 | 4 | 2 | 50 | 50 | 100 | | | | 7 | 20AE1002 | Embedded System Laboratory | PC | 0 | 0 | 4 | 2 | 50 | 0 50 100 | | | | | | | MANDATO | RY COURS | E | | le . | | | | | | | | 8 | 20AC10XX | AUDIT COURSE I | AC | 2 | 0 | 0 | 0 | 100 | 0 | 100 | | | | Total Credits: | | | | | 0 | 8 | 19 | 400 | 400 | 800 | | | # SEMESTER II | S.No. | Course
Code | Course Title | Category | L | Т | P | C | CIA | ESE | TOTAL | | | |--|------------------------------------|--------------------------|----------|---|---|---|----|-----|-----|-------|--|--| | THEORY | | | | | | | | | | | | | | 1 20AE2201 Analog Integrated Circuit Design PC 3 0 0 3 40 60 100 | | | | | | | | | 100 | | | | | 2 | 20AE2202 | VLSI Design Techniques | PC | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | 3 | 20AE23XX | Professional Elective I | PE | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | 4 | 20AE23XX | Professional Elective II | PE | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | 5 | 20AE23XX Professional Elective III | | PE | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | | | PRAC | CTICAL | | | | | | | | | | | 6 | 20AE2001 | VLSI Design Laboratory | PC | 0 | 0 | 4 | 2 | 50 | 50 | 100 | | | | 7 | 20AE2901 | MINI PROJECT | PC | 2 | 0 | 0 | 2 | 50 | 50 | 100 | | | | MANDATORY COURSE | | | | | | | | | | | | | | 8 | 20AC20XX | AUDIT COURSE II | AC | 2 | 0 | 0 | 0 | 100 | 0 | 100 | | | | | Total Credits: | | | | | | 19 | 400 | 400 | 800 | | | # LIST OF PROFESSIONAL ELECTIVES ## PROFESSIONAL ELECTIVE I | S.No. | Course Code | Course Title | Category | L | T | P | С | CIA | ESE | TOTAL | |-------|-------------|---|----------|---|---|---|---|-----|-----|-------| | | | THEORY | | | | | | | | | | 1 | 20AE2301 | Advanced Digital Signal Processing | PE | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 2 | 20AE2302 | Advanced Microprocessors and Microcontrollers | PE | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 3 | 20AE2303 | ASIC and FPGA Design | PE | 3 | 0 | 0 | 3 | 40 | 60 | 100 | PROFESSIONAL ELECTIVE II | S.No. | Course Code Course Title | | Category | L | T | P | C | CIA | ESE | TOTAL | | | |--------|--------------------------|--|----------|---|---|---|---|-----|-----|-------|--|--| | THEORY | | | | | | | | | | | | | | 1 | 20AE2304 | Computer Architecture and Parallel
Processing | PE | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | 2 | 20AE2305 | CAD for VLSI Design | PE | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | # PROFESSIONAL ELECTIVE III | S.No. | Course Code | Course Title | Category | L | Т | P | C | CIA | ESE | TOTAL | |-------|-------------|--|----------|---|---|---|---|-----|-----|-------| | | | THEORY | | | | | | | | | | 1 | 20AE2307 |
Electromagnetic Interference and Compatibility | PE | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 2 | 20AE2308 | Wireless Adhoc and Sensor Networks | PE | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 3 | 20AE2309 | Robotics and Intelligent Systems | PE | 3 | 0 | 0 | 3 | 40 | 60 | 100 | # For the students admitted during the academic year 2019-2020 and onwards # SEMESTER III | S.No. | Course
Code | Course Title | | Т | P | С | CIA | ESE | TOTAL | | | | |--------|----------------|---|---|---|----|----|-----|------|-------|--|--|--| | THEORY | | | | | | | | | | | | | | 1 | 16AP3201 | Computer Architecture and Parallel Processing | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | | 2 | 16AP33XX | Professional Elective V | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | | 3 | 16AP33XX | Professional Elective VI | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | | | | PRACTICAL | | | | | | | | | | | | 4 | 16AP3001 | Electronics System Design Laboratory | 0 | 0 | 4 | 2 | 50 | . 50 | 100 | | | | | 5 | 16AP3901 | Project Phase – I | 0 | 0 | 12 | 6 | 50 | 50 | 100 | | | | | | Total Credits: | | | | | 17 | 220 | 280 | 500 | | | | SEMESTER IV | S.No. | Course
Code | Course Title | L | Т | P | C | CIA | ESE | TOTAL | | | | |-------|----------------|--------------------|---|----|----|-----|-----|-----|-------|--|--|--| | | PRACTICAL | | | | | | | | | | | | | 1 | 16AP4902 | Project Phase - II | 0 | 0 | 24 | 12 | 100 | 100 | 200 | | | | | | | 0 | 0 | 24 | 12 | 100 | 100 | 200 | | | | | # LIST OF PROFESSIONAL ELECTIVES ## PROFESSIONAL ELECTIVE V | S.No. | Course
Code | Course Title | | Т | P | C | CIA | ESE | TOTAL | | | | |--------|----------------|--------------------------------|---|---|---|---|-----|-----|-------|--|--|--| | THEORY | | | | | | | | | | | | | | 1 | 16AP3301 | Testing of VLSI Circuits | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | | 2 | 16AP3302 | Photonics | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | | 3 | 16AP3303 | Nano Electronics | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | | 4 | 16AP3304 | Internetworking and Multimedia | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | | 5 | 16AP3305 | ASIC Design | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | | | # PROFESSIONAL ELECTIVE VI | S.No. | Course
Code | Course Title | L | T | P | С | CIA | ESE | TOTAL | |--------|----------------|------------------------------------|---|---|---|---|-----|-----|-------| | THEORY | | | | | | | ٠ | | | | 1 | 16AP3306 | Robotics | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 2 | 16AP3307 | MEMS and NEMS | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 3 | 16AP3308 | System on Chip Design | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 4 | 16AP3309 | Wireless Adhoc and Sensor Networks | 3 | 0 | 0 | 3 | 40 | 60 | 100 | | 5 | 16AP3310 | Applied Medical Image Processing | 3 | 0 | 0 | 3 | 40 | 60 | 100 | # **CREDIT DISTRIBUTION (R2020)** | Semester | I | II | III | IV | TOTAL | |----------|----|----|-----|----|-------| | Credits | 19 | 19 | 19 | 15 | 72 | # **CREDIT DISTRIBUTION (R2016)** | Semester | I | II | III | IV | TOTAL | |----------|----|----|-----|----|-------| | Credits | 23 | 23 | 17 | 12 | 75 | rman, Board of Studies Dean (Academics) HICET Principal PRINCIPAL # **SYLLABUS** ## SEMESTER-I | | | | SENIESTEN-I | | | | | |--------------|---------------------|---|---|------------|---------|---------|---------| | | RAMME | COURSE CODE | NAME OF THE COURSE
ADVANCED MATHEMATICS FOR | L | T | P | C | | M | .E. | 20MA1102 | ELECTRICAL AND ELECTRONICS
ENGINEERING | 3 | 0 | 0 | 3 | | | ourse
ective | Formulate an life situation Understand to Develop the | g of hypothesis to infer outcome of experiments. nd construct a mathematical model for a linear program. the network modeling for planning and scheduling the ability to use the concepts of Linear Algebra and Spewledge of Fuzzy logic and Fuzzy Algebra. | projec | t activ | ities. | | | Unit | | | Description | | | Hours | | | | TESTIN | NG OF HYPOTHESES | , | | | | | | Ι | and F dis | stributions for testing of
utes and Goodness of fit. | nd Type II errors - Tests based on Normal, t, Chi-Squ
mean, variance and proportions -Tests for Independent. | are
ace | | 9 | | | ** | | R PROGRAMMING | | | | 9 | | | II | | tion - Graphical solution
rtation and Assignment l | n - Simplex method - Artificial variable Techniques -
Models | | | 9 | | | *** | SCHED | ULING BY PERT AN | D CPM | | | .9 | | | III | Resource | c Construction - Critical :
e Analysis in Network S
R ALGEBRA | Path Method - Project Evaluation and Review techniq
cheduling. | ue - | | -9 | | | IV | Vector
generaliz | spaces — norms - Inno
zed eigenvectors - Ci
ions -pseudo inverse - 1 | er Products - Eigen values using QR Factorization anonical forms - singular value decomposition least square approximations -Toeplitz matrices and s | and | | 9 | | | \mathbf{v} | | LOGIC AND FUZZY rinciples of Fuzzy logic | ALGEBRA - Fuzzy sets of operations - Fuzzy membership Matrix | : . | | 9 | | | | | | Total Instructional H | | . • | 45 | 2' 1 | | | | | asic concepts of Probability and Statistical techniques
be useful in solving engineering problems. | for so | iving i | namen | iaticai | | C | ourse | - | ortation and assignment models to find optimal solu | ıtion ir | ı ware | housin | g and | | | tcome | travelling. | et scheduling using PERT and CPM. | | | | | | | | CO4: Achieve an un | nderstanding of the basic concepts of algebraic equations to logic in power system problems. | ns and | metho | d of so | lving | | | BOOK | con Gobriol B Costs " | Linear Algebra". Academic Press, Second Edition,20 |)7 | | | | | 1 -K10 | JUNIO DION | ISOIL CADITEI D.COSIA. | Linear Argeora , Academic Fress, Second Edition, 200 | 11. | | | | - T1 -Richard Bronson, Gabriel B.Costa, "Linear Algebra", Academic Press, Second Edition, 2007. - T2 -Richard Johnson, "Miller & Freund's Probability and Statistics for Engineer", Prentice -Hall, 7th Edition, 2007. - T3 Taha H.A,"Operations Research, An Introduction "8th Edition, Pearson Education, 2008. ### REFERENCE BOOKS - R1 -Gupta S.C. and Kapoor V.K."Fundementals of Mathematical Statistics", Sultan an Sons, 2001. - R2 -Prem Kumar Gupta, D.S. Hira, "Operations Research," S. Chand & Company Ltd, New Delhi, 3rd edition, 2008. - R3- Panner Selvam, Operations Research", Prentice Hall of India, 2002. - R4- George J.Klir and Yuan, B., Fuzzy sets and fuzzy logic, Theory and applications, Prentice Hall of India Pvt.Ltd., 1997. Chairman - BoS EEE - HiCET Chairman College of the | | RAMME | ADVANCED DICITAL SYSTEM | | | _ | P | C | |----------------------------|---|---|---|----------------------------------|--------------------|-------------------|---| | M | I.E. | 20AE1201 | DESIGN | 3 | 0 | 0 | 3 | | | ourse
jective | 2. Basic conce3. Learn the co4. Study the co | pts of Sequential Circuit Design. pts of Asynchronous Sequential Circuit Design encepts of fault modeling and fault - tolerant sencepts of programmable logic devices. concepts of System Design Using Verilog and | ystems | nable D | evices | | | Unit | | | Description | | | Instructi
Hour | | | I | Analysis
table, sta
ASM cha | ate table assignment ar
art and realization using | us sequential circuits and modeling- State di-
nd reduction-Design of synchronous sequenti
ASM. | | | 9 | 5 | | п | Analysis
transition
circuit-S
asynchro | of asynchronous seque
n table and problems
tatic, dynamic and essen
nous circuits – designir | TTIAL CIRCUIT DESIGN ntial circuit — flow table reduction-races-state in transition table- design of asynchronous ntial hazards — data synchronizers — mixed ope ng vending machine controller | s sequen | tial | 9 | | | Ш | Fault tab
Toleranc
schemes | ele method-path sensitiz
te techniques – The co
– Built in self-test. | ESTABILITY ALGORITHMS ration method – Boolean difference method-D mpact algorithm – Fault in PLA – Test gene SING PROGRAMMABLE DEVICES | | | 9 | | | IV | Program | ming logic device fam | ilies – Designing a synchronous sequential ce state machine using PLD – FPGA – Xilinx F | | | 9 | | | v | SYSTEM
Hardwar
Modellin
Synthesi
simulation
circuits | ng in Verilog HDL - I
s – Synthesis of Finite
on of Verilog code –T | og HDL – Logic System, Data Types and O
Behavioral Descriptions in Verilog HDL –
State Machines– structural modeling – com
est bench - Realization of combinational and
sters – counters – sequential machine – ser | HDL Ba
pilation a
d sequen | sed
and
tial | 9 | | | | | _ | Total Instructi | ional Ho | urs | 45 | | | | ourse
itcome | CO2: Design and an CO3: Explore fault CO4: Learn of prog | alysis of sequential circuit. lalysis of asynchronous sequential circuit. diagnosis and testability algorithm rammable logic devices. lalysis of hardware description languages. | | | | | | TE
T1 | XT BOOK
Charle | | ntals of Logic Design" Thomson Learning 200 | 4 | | | | | T2 | M.D.O | Ciletti , Modeling, Syntl | nesis and Rapid Prototyping with the Verilog F | IDL, Prei | ntice Ha | ıll, 1999. | | | RE
R1
R2
R3
R4 | M.G.A
Parag
Nriper | K.Lala "Digital system
ndra N Biswas "Logic I | – Computer Design, Prentice Hall (PTR),
1999
Design using PLD" B S Publications,2003
Design Theory" Prentice Hall of India,2001
and Fault Testable Hardware Design" B S Pub | | ,2002 | | | Chairman - BoS EEE - HICET | ROGRAMI | ME COURSE NAME OF THE COURSE | | L | T | P | C | |---------------------|--|---|---|---|-----------------|----| | M.E. | 20AE1202 | EMBEDDED SYSTEM DESIGN | 3 | 0 | 0 | 3 | | Course
Objective | Study Under Learn | stand the design challenges and methodologies of embedded system general and single purpose processor and its developement stand bus structures the embedded system design procedurs for various processes the embedded software tools for RTOS | | | | | | Unit | | Description | | | uction:
ours | al | | I | EMBEDDED SYST
Embedded System O
Methodology, RT-L
Custom Single-Purpo | verview, Design Challenges – Optimizing Design Metrics, Design
Level Combinational and Sequential Components, Optimizing | | | 9 | | | п | Basic Architecture,
Environment: Ap | NGLE PURPOSE PROCESSOR Pipelining, Superscalar and VLIW architectures, Development opplication-Specific Instruction-Set Processors (ASIPs) mers, Counters and watchdog Timer, UART and Analog-to-Digital Concepts. | | | 9 | | | ш | Based I/O, Arbitration and ARM Bus, Wirele | epts, Microprocessor Interfacing – I/O Addressing, Port and Buson, Serial Protocols, I ² C, CAN and USB, Parallel Protocols – PCI less Protocols – IRDA, Bluetooth, IEEE 802.11. | | | 9 | | | IV | Basic State Machine
Process Model, Con | AND CONCURRENT PROCESS MODELS Model, Finite-State Machine with Data path Model, Concurrent munication among Processes, Synchronization among processes, eal-time Systems, Automation: Synthesis, Intellectual Property as Models. | | | 9 | | | V | Compilation Process | TWARE DEVELOPMENT TOOLS AND RTOS s - Libraries - Porting kernels - C extensions for embedded and debugging techniques - RTOS - System design using RTOS. | | | 9 | | | | | Total Instructional Hours | | | 45 | | | Course
Outcome | CO2: Eval
CO3: Con
CO4: Rec | ntify the various embedded system design luate the general and single purpose processors apare various bus structures ognize the process models ally the embedded software development tools | | | | | ## **TEXT BOOKS:** - Bruce Powel Douglas, "Real time UML, second edition: Developing efficient objects for embedded **T1** systems", 3rd Edition 1999, Pearson Education. - **T2** Frank Vahid and Tony Gwargie, "Embedded System Design", John Wiley & sons, 2002. ## REFERENCE BOOKS: - Daniel W.Lewis, "Fundamentals of embedded software where C and assembly meet", Pearson Education, R1 - R2 - Steve Heath, "Embedded System Design", Elsevier, Second Edition, 2004. Jonathan W.Valvano: "Embedded Microcomputer Systems Real Time Interfacing", Cengage Learning; R3 Third of later edition - R4 Osborn.G, "Embedded microcontroller and p0rocessor design", Pearson 3 | PROGI | RAMME | COURSE CODE | NAME OF THE COURSE | \mathbf{L} | T | P | C | |-----------------|---|---|---|------------------|---------|-------------------|---| | C | I.E.
OURSE
JECTIVE | To analyz To study To study | DIGITAL IMAGE PROCESSING stand the fundamentals of Digital Image are and design the Image transforms and Enhancement. and analyze the operation of Image restoration and constand understand the Image compression & Segmentation, stand color and multispectral image processing. | | | 0 | 3 | | Unit | | | Description | | 1 | Instructi
Hour | | | I | Introduction Perception Logical, Systems - | n -Connectivity and :
Geometric Operations.
2D Convolution - Corr | eps of Digital Image Processing Systems-Elements of
Relations between Pixels. Simple Operations- Arith
Mathematical Preliminaries - 2D Linear Space In
relation 2D Random Sequence - 2D Spectrum. | nmetic | , | 9 | | | п | Image Tra
FFT - D
Properties
Processin | CT -Hadamard Transfe | al and Unitary Transforms-Properties and Examples. 2D
orm - Haar Transform - Slant Transform - KL Trans
e Enhancement:- Histogram Equalization Technique-
pace And Frequency - | form | - | 9 | | | Ш | Image Re
Matrices
Inverse I
Deconvol | and Its Application In
By Wiener Filtering —
ution-Image Reconstruc | vation And Degradation Model, Circulant And Block Cin Degradation Model - Algebraic Approach to Restor Generalized Inverse-SVD and Interactive Methods - ection From Projections. | ration | - | 9 | | | IV | Image compression: Redundancy And Compression Models -Loss Less And Lossy. Loss Less-Variable-Length, Huffman, Arithmetic Coding - Bit-Plane Coding, Loss Less Predictive Coding, LossyTransform (DCT) Based Coding, JPEG Standard - Sub Band Coding. Image Segmentation: Edge Detection - Line Detection - Curve Detection - Edge Linking And Boundary Extraction, Boundary Representation, Region Representation And Segmentation, Morphology-Dilation, Erosion, Opening And Closing. Hit And Miss Algorithms Feature | | | | | | | | V | Color Im
Different
Image Pr | Models. Multispectral | processing mentals, RGB Models, HSI Models, Relationship Booling Analysis - Color Image Processing Three Dime Axial Tomography-Stereometry-Stereoscopic Image D | nsiona
isplay | .l
- | 9
45 | | | OUT TEX T1 T2 | Digita | CO1: Identify various CO2: Analyze the ope CO3: Design Image c CO4: Design the Image CO5: Create models for all Image Processing, Goal Image Processing, Ke | rse, students will be able to a rithmetic and geometrical operations of image fundamention Image transforms and Enhancement. compression and restoration techniques. Ge compression and Segmentation. For color and multispectral image processing. Inzalez.R.C & Woods. R.E., 3/e, Pearson Education, 200 nneth R Castleman, Pearson Education, 1995. | | | | | | REF
R1
R2 | Educa
2.Fun | gital Image Procesing, S
ation ,2009
damentals of Digital im | . Jayaraman, S. Esakkirajan, T. Veerakumar, McGraw Fage Processing, Anil Jain.K, Prentice Hall of India, 198 | | | | | | R3
R4 | 3.Ima | ge Processing, Sid Ahn | ned, McGraw Hill, New York, 1995
damentals, Maria Petrou, Costas Petrou, Wiley, 2010 | | | | | 4 HICET COLLEGE | | RAMME
M.E. | COURSE CODE NAME OF THE COURSE L T P 20AE1204 RESEARCH METHODOLOGY 3 0 0 | | | | | | | | | |----------------------|----------------------------|--|---|---------------------------|-----------------------|---------------------|------------------------|--|--|--| | Course
Objectives | 1.
2.
3.
4.
5. | Understand the concept
Acquire knowledge abo
Confer about the multiv | edge for carrying out research work effective
is in various research designs.
ut Experimental design and Data collection
ariate analysis techniques
on Research Practices and Report writing. | ly. | | | | | | | | Unit | | | Description | | | | Instructional
hours | | | | | I | | UCTION TO RESEAR | CH | | | | | | | | | | Danaga | Definition Objectives of | research Manning of research Characteristi | os of rose | arch -Imn | ortance | 1 | | | | | Π | of resear
Qualities | Definition-Objectives of
ch activities- Types of
of good researcher- Research
CH DESIGN | research, Meaning of research- Characteristi
f research-Research approaches-Significan
arch process. | cs of resea
ce-Probler | arch -Imp
ns in re | ortance
esearch- | 9 | | | | RESEARCH PRACTICE AND REPORT WRITING. MULTIVARIATE ANALYSIS TECHNIQUES Literature review-Conference Proceedings-Journals-Journal Impact Factor (JFI)-Citation index-h-index-Significance of report writing-Different steps in writing report-Layout of report writing-Types of reports-Mechanics of writing a research report-precautions for writing research reports-Conclusion and Scope for future work-Oral presentation. Classification of Data-Collection of primary data-Observation-Interview method-Collection of data through Questionnaires-schedules-collection of secondary data-Research applications of secondary data- Growth of Multivariate techniques-Characteristics and applications-Classification-Variables in multivariate analysis-Important multivariate techniques-Factor analysis-Rotation in factor analysis-R-type Benefits and drawbacks-classification of secondary data-Internal -External data sources. Total instructional hours 45 9 9 9 CO1: Observe the various
approaches to do research. Course Outcomes III IV V CO2: Carryout the research design. DATA COLLECTION METHODS and O type factor analysis-Path analysis. CO3: Evaluate the data collection for research activities. CO4: Acknowledge the function of Multivariate Analysis Techniques CO5: Organize the research activity systematically and prepare research report effectively. ## TEXT BOOKS: - C.R. Kothari, Research Methodology Methods & Techniques, NEW Age International (P) Limited, New Delhi, 2007. - Dr. Deepak Chawla, Dr. Neena Sondhi, Research Methodology concepts and cases, Vikas Publishing House Pvt. Ltd., New Delhi, 2011 # REFERENCE BOOKS: - K. Prathapan, Research Methodology for Scientific Research, I.K. International Publishing House Pvt. R1. Ltd. New Delhi, 2014L. - R. Panneerselvam, Research Methodology, PHI Learning Private Limited, New Delhi, 2011. R2 - R3. Donald H. McBurney, Research Methods, Thomson Asia Pvt. Ltd. Singapore, 2002. EEE - HICET | PROGRAMME | COURSE CODE | NAME OF THE COURSE | \mathbf{L} | T | P | \mathbf{C} | |------------------|-------------|--|--------------|---|---|--------------| | M.E. | 20AE1001 | ELECTRONIC SYSTEM DESIGN
LABORATORY | 0 | 0 | 4 | 2 | 1. Impart the knowledge on Interfacing of different Processor. Course Objective 2. Testing of flash controller programming. - 3. Analyze of process control and PCB designing.4. Intend and analysis of modulator and demodulator. - 5. Design system using instrumentation amplifier. # Expt. # No. #### Description of the experiments - 1 Study of different interfaces (using Embedded Microcontroller). - 2 Flash Controller Programming Data flash, with erase, verify and Fusing. - 3 Design of Wireless Data Modem. - 4 PCB layout design using CAD tool. - 5 Design of Process Control Timer. - 6 Design of AC/DC voltage regulator using SCR. - 7 Design of an Instrumentation Amplifier. - 8 Implementation of Adaptive filters and multistage multi-rate system in DSP processor. - 9 Sensor design using simulation tools. - 10 Design of Temperature sensor using Instrumentation Amplifier. Total Practical Hours 45 CO1: Design various analog / digital transceiver systems and control different process. Course Outcome CO2: Analyze flash controller programming and wireless data modem. CO3: Analyze PCB designing for various circuits. CO4: Propose interfaces using modulator and demodulator. CO5: Design and analysis of operational and instrumentation amplifiers. Chairman - BoS EEE - HiCET Chairman Soll & Chairman | PROGRAMME
M.E. | E COURSE CODE
20AE1002 | NAME OF THE COURSE EMBEDDED SYSTEMS LABORATORY | L
0 | T
0 | P
4 | |---------------------|---|--|---------|----------|--------| | Course
Objective | process. 2. Design system using Study and design v. Study the different | edge on various analog / digital transceiver systems and
ing 8086 and 8051 Microcontroller.
wireless network using embedded systems.
at interfaces using Embedded Microcontroller.
is of real time operating system. | d contr | ol diffe | erent | | Expt.
No. | | Description of the experiments | | | | | 1 Syste | m design using PIC Micr | ro controller and its applications. | | | | | 2 Testin | ng of RTOS environment | and system programming using ARM7 Processor. | | | | 6 Modern Train Controller using PIC micro controller. Elevator controller using PIC Micro Controller. RTC using PIC Micro Controller. 7 Study of MSP430 and 8086-16 bit Microprocessor its applications System design using 8051 Micro Controller, 8086 Micro Processor. 8 Designing of Wireless Network using Embedded System. 9 Sensor design using simulation tools. 10 Study of 32 bit ARM7 microcontroller RTOS and its applications **Total Practical Hours** 45 C CO1: Design various analog / digital transceiver systems and control different process. Course Outcome 3 4 CO2: Propose interfaces using embedded Microcontroller. CO3: Experiment Wireless Network Using Embedded Systems. CO4: Analyze the system using 8086 and 8051 Microcontroller. CO5: Design and Analysis of Real Time Operating System Chairman - BoS EEE - HICET Chairman 2000 Chairman 2000 # SEMESTER-II | PROGRAMME | | COURSE CODE | COURSE CODE NAME OF THE COURSE | | | | C | |----------------------|--------------------------------------|---|---|------------|------------------------|---------------------|------------------------| | | 1.E. | 20AE2201 | 20AE2201 ANALOG INTEGRATED CIRCUIT DESIGN | | 0 | 0 | 3 | | Course
Objectives | 2.
3.
4. | Analyze high frequency
differential amplifiers.
Study the different type
Gain the various applic | amplifiers using pmos and nmos driver circuit
y concepts of single stage amplifiers and noise
es of current mirrors and to know the concepts
ations in operational amplifier.
cepts in stability and frequency compensation | characte | ristics as | sociated | | | Unit | | | Description | | | J | Instructional
hours | | I | SINGLE | STAGE AMPLIFIERS | 3 | | | | nours | | п | active los
cascode a
High gair | ad, Cascode and folded
implifiers – to meet spec
a amplifier, structures. | nt circuits and models, CS, CG and Source I cascode configurations with active load, D ified SR, noise, gain, BW, ICMR and power d ISE OF CHARACTERISTICS | esign of | differer | ntial and | 9 | | 11, | AMPLIF | TERS | | | | | | | | and diffe
differenti | rential pair stages, Statis
al amplifiers. | with nodes, frequency response of CS, CG and
stical characteristics of noise, noise in single | source f | follower,
plifiers, | cascode
noise in | 9 | | III | | | E OPERATIONAL AMPLIFIERS
endback circuits, effect of loading in feedback to | networks | , operati | onal | 9 | | | amplifier | performance parameters | , One-stage Op Amps, Two-stage Op Amps, In apply rejection, noise in Op Amps. | | | | 9 | | \mathbf{IV} | STABIL | ITY AND FREQUENC | Y COMPENSATION OF TWO STAGE AN | | | | | | V | cascode s
two stage | second stage, multiple sy | two stage Op amp single stage CMOS Cs a
stems, Phase Margin, Frequency Compensati
so stage Op Amps, Other compensation technic | on, and (| | | | | v | Current s
source, D | inks and sources, Curren
Design of high swing cas | t mirrors, Wilson current source, Wildar currer
code sink, current amplifiers, Supply indepen
d CTAT current generation, Constant-Gm Bias | dent bias | , Cascod
sing, tem | e current | 9 | | | | | ר | Fotal inst | truction | al hours | 45 | | | | CO1: Design and analys | is of amplifiers.
cy response and noise analysis. | | | | | | Cour
Outco | | CO3: Familiarize the Op | perational Amplifiers. | | | | | | Outco | illes | | t types of Biasing Circuits. | 4 4 1 | O::4- | | | | | | CO5: Gain knowledge a | bout the engineering applications of Analog In | tegrated | Circuits | | | | TEXT | BOOKS: | | | | | | | | | T1.
T2. | | esign of Analog CMOS Integrated Circuits", T
n, "Analog Design Essentials", Springer, 2006 | | raw Hill | , 2001 | | | REFE | RENCE H | BOOKS: | | | | | | | | R1.
R2. | Phillip E.Allen, D | and MOS Analog Integrated Circuit Design",
louglas R.Holberg, "CMOS Analog Circuit D | | | | | | | R3. | 2nd Edition, 2002.
Jacob Baker "CM | OS: Circuit Design, Layout, and Simulation" | , Wiley | IEEE Pi | ess, 3rd | Edition, | | Chai | rmat | 2010 | Chairman 300 | | r
T | 6 | emics) | | EE | E - H | ICET | 8 | Dear | and the same | CET | | | PROGRAM, J | | COURSE C | | | OF THE COURS
IGN TECHNIQU | | L
3 | T
0 | P
0 | C
3 | |------------|-------------------------------------|---|---|--|--|---------------------------|-------------------|--------|------------------|--------| | | OURSE
ECTIVE | To impa 1. 2. 3. 4. 5. | To analyze and of To study and of To study and to | the fundamental
design the CM
liscuss characte | als of MOS transis
IOS technologies.
ristics and perforn
/LSI system comp
mming. | nance estimation. | | | | | | Unit | | | | Description | ē | | | | tructio
Hours | | | I | MOS tran
transistor
gate capa | nsistors, CMO
action, Ideal l
citance model | S logic, MOS to
I-V characterist | ics, Simple MO
S Diffusion capa | ORY Introduction, Enlos capacitance Moacitance model, No | dels, Detailed M | OS | | 9 | | | II | CMOS fa | brication and ss, MOSlayer reuits, CMOS | s stick diagram: | technologies, I
and Layout dis | P-Well process, Nagram, Layout des | ign rules, Latch | up in | | 9 | | | ш | CIRCUI
Determin
capacitan | T CHARACT
ation of Pull-
ace loads, Circ | up to Pull-dow | n ratio for NMO
ansmission gate | ANCE ESTIMA
OS inverter, super
es, Delay estimati | buffers, Driving | ; large
ation, | | 9 | | | IV | Multiple: | ers, Decoders
rryadders, Ca | rry look ahead | priority encode: | rs, Shift registers.
eed adders, Multij | Arithmetic circu
plier | its– | | 9 | | | V | Overview
concepts. | v of digital des
, modules and | sign with Verilo | og HDL, hierard
s, gate level mo | chical modeling co
deling, data flow r | nodeling, behavi | | | 9 | | | | |
 | | TOTAL INSTR | UCTIONAL HO | OURS | | 45 | | CO1: Identify various MOS transistor theory CO2: Analyze the CMOS technology and to design. COURSE OUTCOME CO3: Design and analyze circuit characteristics and Performance. CO4: Design the VLSI system components and circuits. CO5: Create models using Verilog programming. #### **TEXT BOOKS:** Neil H.E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design a circuits and systems T1 perspective, Third Edition, Pearson Education, 2010 Douglas A.Pucknell and Kamran Eshraghian, "Basic VLSI Design", Third Edition, Prentice-Hall of India **T2** 2004. # REFERENCES: Samir Palnitkar, "Verilog HDL a Guide to Digital Design and Synthesis", Second Edition, Pearson R1 Education, 2010. John P. Uyemura "Introductionto VLSI Circuits and Systems", Wiley India Edition, 2006. R2 Neil H.E. Weste and Kamran Eshraghian Principles of CMOS VLSI Design, Pearson Education ASIA, **R3** 2nd edition, 2000. EEE - HICET | PROGR
M. | | OF THE COURSE
IGN LABORATORY | L
0 | T
0 | P
4 | |--------------------|--|---|--------|--------|--------| | Course
Objectiv | Learn new software tools for VLSI Study various design methods for Study various design methods for Analyze various applications applications using Analysis the digital system and single system. | VLSI circuits.
designing.
VHDL and Verilog. | | | | | EXPT.
No | Description of the Exper | iments | | | | | 1. | Design and Simulation of Arithmetic /logic operator cir | cuits using verilog/VHDL | | | | | 2. | Design and 8-bit signed multiplication algorithm using | verilog / VHDL | | | | | 3. | Modeling of Combinational/Sequential Circuits Using | Verilog HDL | | | | | 4. | Simulation of Digital Circuits using Xilinx ISE. | | | | | | 5. | Design and Simulation of Digital Circuits using VHDL | and Porting them into FPGA. | | | | | 6. | Layout of Simple NMOS/CMOS Circuits. | | | | | | 7. | Analysis of Asynchronous and clocked synchronous see | quential circuits. | | | | | 8. | Design and Implementation of ALU in FPGA using VE | IDL and Verilog. | | | | | 9. | Modeling of Sequential Digital system using Verilog ar | nd VHDL. | | | | | 10. | Modeling of MAC unit using verilog / VHDL | | | | | | | | Total Practical Hours | | 2 | 45 | | Cour
Outco | CO3: Familiarize the applications of VI SI | g VHDL programming. circuits. | | | | CO4: Analysis the MAC unit using verilog. CO5: Design the VLSI circuits using Xillinx ISE tool. HICET ## PROFESSIONAL ELECTIVE-I NAME OF THE COURSE | | | | | I | | | AL ELEC | | | | - | _ | _ | |--------------|---|---|---|---|----------------------------------|--|-------------------------------------|---------------------------|-----------------------------------|--------------------------|------------|----------------|---| | PRO | OGRAMME | COURSE C | CODE | | | | THE CO | | | L | T | P | C | | | M.E. | 20AE230 | 01 | ADVAN | CED I | DIGITA | L SIGNA | L PROCI | ESSING | 3 | 0 | 0 | 3 | | COU.
OBJI | RSE
ECTIVE | 2. 3. 3. 4. 5. | To under
To analy:
To study
To study | dge on
stand Disc
ze and des
and analy
and Desig
stand and | sign Por
ze the r
gn adap | wer spec
multi-rate
tive Filte | trum estin
e digital s
ers. | nation.
ignal proc | essing | gn, opt | | | | | Unit | | | | De | escript | ion | 980 | | | | In | struct
Hou | | | | DICCORPOR | DANDOMO | TONIAT | DDOCES | OUNG | | | | | | | 1104 | | | I | Weiner Khite
Factorization
Pade approxir | Theorem, spe | n - Pov
ecial type
's metho | wer spect | ral de
om pro | cess - Si | ignal mod | leling-Lea | st Squares | method | 1 , | 9 | | | II | Non-Parametr
estimators – U
Welch estima
estimation usi | ric methods -
Inbiased cons
ation - Mode
ng Yule-Wall | Correlat
sistent est
el based
ker methe | timators -
approach
od. | Period
- AR | ogram es | timator - | Barlett spe | ectrumesti | mation | - | 9 | | | Ш | LINEAR ES' Maximum lik Wiener filter Linearpredict realization, Lo ADAPTIVE | telihood criter - Discrete ion, Prediction | wrion - E
Wiener
on error - | fficiency
Hoff equ
Whitenir | of estinuations ng filte | - Recu
r, Invers | ırsive est
e filter - | timators -
Levinson | Kalman
recursion | filter | - | 9 | | | IV | FIR Adaptive
descent meth
Adaptive ech
weighted RLS | e filters - Ne
od - Widrov
o canceller -
S - Sliding wir | W Hoff IAdaptivendow RL | LMS Ada
ve noise c
.S - Simpli | aptive :
cancella
ified II | algorithm
ation - R
R LMS A | n - Adap
LS Adap | tive cham
tive filter | nel equali | zation | - | 9 | | | V | MULTIRAT Mathematical time model - integer factor coding - Wav | description of
Direct digital | of change
Il domain
multistag | e of sampl
n approach
ge realizati | ling rat
1 - Dec
ion - Pe | te - Inter
imation
oly phase
ntation of | by intege
realization
wavelet | r factor -I
on -Applic | nterpolations to so
of signals | on by a
sub bar
s. | in
id | 9
45 | | | COU | RSE OUTCOM | CO2:
CO3:
CO4: | : Analyze
: Analyze
: Design t | various are the spectre linear est the adaptive the multi- | rum est
timation
ve Filte | timation.
n and Pre
rs. | ediction. | | s for rand | om sig | nals. | | | | 11 | TEXT BOOKS: | | | | | | | | | | | | | | T1 | Monson H. Sons Inc., New | Hayes, "Stat | tistical | Digital S | Signal | Process | ing and | Modelin | g", John | Wile | y an | d | | | T2 | Sophoncles J. C
REFERENCES | Orfanidis, "Op | otimum S | Signal Proc | cessing | ", McGr | aw-Hill, 2 | 2000 | | | | | | | R1 | John G. Proa | akis, Dimitri: | s G. M | ⁄Ianolakis, | "Dig | ital Sigi | nal Proce | essing", I | Prentice 1 | Hall o | f Ind | ia, | | | R2 | Simon Haykin, | | ilter Theo | ory", Prent | tice Ha | ll, Englel | nood Cliff | fs, NJ1986 | | | | | | | R3 | P. P. Vaidyanat | | | | | | | | | | | | | | R4 | N I Fliege " | | | | | | | | nks – Wa | velets' | . Wie | lv. | | Charman - Bos EEE - HICET 1999. Charman Solling College Of Solling Sol R4 N. J. Fliege ,"Multirate Digital Signal Processing: Multirate Systems - Filter Banks - Wavelets", Wiely, | PF | ROGRAMME
M.E. | COURSE CODE
20AE2302 | NAME OF THE COURSE ADVANCED MICROPROCESSORS & MICROCONTROLLERS | _ | T
0 | P
0 | C
3 | |------|--|--|---|----|--------|---------------|--------| | | ourse 3 | . To explore the high performan | | | | | | | Unit | | | Description | In | | ictio
ours | | | | MICDODDO | Chocon in Champeoning | | | | | | | I, | Instruction Set
and paging – S | | odes – Memory hierarchy –register file – Cache – Virtual memory struction pipeline – pipeline hazards – instruction level parallelism – RISC versus CISC. | | | 9 | | | п | Instruction Set
and paging – S
reduced instru-
HIGH PERFO
CPU Architec | — Data formats —Addressing m
Segmentation- pipelining —the insection set —Computer principles —
DRMANCE CISC ARCHITEC
ture- Bus Operations — Pipelini
titasking — Exception and Inte | struction pipeline – pipeline hazards – instruction level parallelism – RISC versus CISC. | | | 9 | | CO1: To understand the fundamentals of microprocessor architecture. CO2: To know and appreciate the high performance features in CISC architecture. Course Outcome IV V CO3: To know and appreciate the high performance features in RISC architecture. ADC - PWM - UART - Timer Interrupts - System design using MSP430Microcontroller. CO4: To perceive the basic features in Motorola microcontrollers. CO5: To interpret and understand PIC Microcontroller. set- addressing modes - Programming the ARM processor. MSP430 16 - BIT MICROCONTROLLER PIC MICROCONTROLLER introduction to C-Compilers. # TEXT BOOKS: T1. Daniel Tabak, "Advanced Microprocessors", McGraw Hill.Inc., 1995. T2. James L. Antonakos, "The Pentium Microprocessor" Pearson Education, 1997. # REFERENCE BOOKS: R1. Steve Furber, "ARM System – On – Chip architecture", Addision Wesley, 2000. R2. Andrew N.Sloss, Dominic Symes and Chris Wright "ARM System Developer's Guide: Designing and The MSP430 Architecture- CPU Registers - Instruction Set, On-Chip Peripherals - MSP430 - Development Tools, CPU Architecture - Instruction set - interrupts- Timers- I2C Interfacing -UART- A/D Converter -PWM and Optimizing System Software", First edition, Morgan Kaufmann Publishers, 2004. R3 John. B. Peatman, "Design with PIC Microcontroller", Prentice hall, 1997. Chairman - BoS EEE - HICET Chairman Se Dean (Academics) 9 45 Hours **Total Instructional Hours** | 0-00 | 1. Describe the design flow of different types of ASIC and PLD 2. Gain knowledge about floor planning, placement and routing in ASIC 3. Implement the digital design using Verilog and VHDL 4. Infer the architecture of different types of FPGA 5. Describe the design issues of SOC | | |------
---|---------------------| | Unit | Description | Instructional Hours | | I | OVERVIEW OF ASIC AND PLD Types of ASICs - Design Flow - CAD tools used in ASIC Design - Programming Technologies: Antifuse - Static RAM - EPROM and EEPROM Technology, Programmable Logic Devices: ROMs and EPROMs - PLA - PAL. Gate Arrays - CPLDs and FPGAs | 9 | | II | ASIC PHYSICAL DESIGN System partition -Partitioning - Partitioning Methods - Interconnect Delay Models and Measurement of Delay - Floor Planning - Placement - Routing : Global Routing - Detailed Routing - Special Routing - Circuit Extraction - DRC | 9 | | Ш | LOGIC SYNTHESIS, SIMULATION AND TESTING Design Systems - Logic Synthesis - Half Gate ASIC -Schematic Entry - Low Level Design Language - PLA Tools - EDIF- CFI Design Representation. Verilog and Logic Synthesis - VHDL and Logic Synthesis - Types of Simulation - Boundary Scan Test - Fault Simulation - Automatic Test Pattern Generation. | 9 | | IV | FPGA Field Programmable Gate Arrays- Logic Blocks, Routing Architecture, FPGA Design: FPGA Physical Design Tools -Technology Mapping - Placement & Routing - Register Transfer (RT) / Logic Synthesis - Controller/Data Path Synthesis - Logic Minimization | 9 | | v | SOC DESIGN Design Methodologies – Processes and Flows - Embedded Software Development for SOC - Techniques for SOC Testing – Configurable SOC – Hardware / Software CoDesign - Case studies: Digital Camera, Bluetooth Radio / Modem, SDRAM and USB. | 9 | | | Total Instructional Hours | 45 | | Out | CO1: Summarize the concepts of ASIC and PLD CO2: Apply the different high performance algorithms in ASICs CO3: Demonstrate the synthesis, simulation and testing of digital systems CO4: Outline the different architectures of FPGA CO5: Discuss the design issues of SOC CT BOOKS: | | | H. 2 | ALDUUNA: | | NAME OF THE COURSE ASIC AND FPGA DESIGN #### TEXT BOOKS **PROGRAMME** M.E. COURSE CODE 20AE2303 T1 - David A. Hodges, Analysis and Design of Digital Integrated Circuits ,3rd Edition, Tata Mc Graw Hill , 2004. T2 - M.J.S. Smith: Application Specific Integrated Circuits, Pearson, 2003. #### REFERENCE BOOKS: - R1 Parag.K.Lala, Digital System Design using Programmable Logic Devices, BSP, 2003. - R2 Wayne Wolf, FPGA-Based System Design, Prentice Hall PTR, 2004. - R3 Sudeep Pasricha and NikilDutt, On-Chip Communication Architectures System on Chip Interconnect, Elsevier, 2008. - R4 Farzad Nekoogar and Faranak Nekoogar, From ASICs to SOCs: A Practical Approach, Prentice Hall PTR, 2003. Chairman - BoS EEE - HICET Chairman 88 Dean (Academics) \mathbf{C} 3 #### PROFESSIONAL ELECTIVE-II | | RAMME
.E. | COMPUTER ARCHITECTURE AND PARALLEL. | | L
3 | T
0 | P
0 | C
3 | |--|--|--|--|--------------------|--------|----------------------------|--------| | Course 2. Learn the 3. Study M 4. Basic co | | Learn the Study M Basic co | ncepts of computer architecture Design and performance. e difference between pipeline and parallel processing conce emory Architectures, Memory Technology and Optimizatio ncepts of multiprocessors. rious types of processor architectures and the importance of Description | n | | hitectu
structi
Hour | ional | | ı | Fundamer
Multi-vec | ntals of Computer at | D PERFORMANCE MEASURES Design – Parallel and Scalable Architectures – Multiproceurchitectures – Multithreaded architectures – Stanfordus-flow architectures - Performance Measures. | | | 9 | ·s | | п | PARALI
Instruction
processors
Prediction | LEL PROCESSIN n Level Parallelism s -Overcoming D | reading of the Concepts and Challenges - Pip and Its Exploitation - Concepts and Challenges - Pip ata Hazards with Dynamic Scheduling — Dynamic ultiple Issue Processors - Performance and Efficiency in Advanced | Branch | 1 | 9 | | | Ш | MEMORY HIERARCHY DESIGN Memory Hierarchy - Memory Technology and Optimizations - Cache memory - Optimizations of Cache Performance - Memory Protection and Virtual Memory - Design of Memory Hierarchies. | | | | | | | | IV | Symmetri
Performa | nce Issues - Sy | shared memory architectures – Cache coherence is nchronization issues – Models of Memory Consist Buses, crossbar and multi-stage switches. | sues -
ency · | • | 9 | | | v | Software | Intel Multi-core ar | CTURES ithreading – SMT and CMP architectures – Design issues chitecture – SUN CMP architecture – IBM cell architecture | – Case-
re – hp | | 9 | | | | | | Total Instructional | Hours | ; | 45 | | | | URSE
COME | CO2: Learn the c
CO3: Analysis of
CO4: Learn the | I analysis of computer architecture and performance. lifference between pipeline and parallel processing concepts f Memory Technology and Optimization distribution of shared memory architectures. I analysis of multi core architecture. | 3. | | | | | T | EXT BOOK | | | | | 1. 22 | | - David E. Culler, Jaswinder Pal Singh, "Parallel Computing Architecture: A hardware/ software approach", **T1** Morgan Kaufmann / Elsevier, 1997 - **T2** Hwang Briggs, "Computer Architecture and parallel processing", McGraw Hill, 1984. REFERENCE BOOKS: - John P. Hayes, "Computer Architecture and Organization", McGraw Hill R1 - John P. Shen, "Modern processor design. Fundamentals of super scalar processors", Tata McGraw Hill 2003 R2 - Kai Hwang, "Advanced Computer Architecture", McGraw Hill International, 2001 R3 - William Stallings, "Computer Organization and Architecture Designing for Performance", Pearson Education, Seventh Edition, 2006 R4 EEE - HICET | PROGRAMME
M.E. | | COURSE CODE NAME OF THE COURSE 20AE2305 CAD FOR VLSI DESIGN | | L
3 | T
0 | P
0 | C
3 | |---------------------|----------------------------|--|---------|--------|--------|--------|--------| | Course
Objective | 1.
2.
3.
4.
5. | Recall the various physical design methods in VLSI. Understand the concepts behind the VLSI design rules. Infer the concept of floor planning and routing techniques. Interpret the simulation techniques at various levels in VLSI design flow. | iiques. | | | | | | Unit | Description | Instructional
Hours | |------|---|------------------------| | I | VLSI DESIGN METHODOLOGIES Introduction to VLSI Design methodologies, Basics of VLSI design automation tools, Algorithmic Graph Theory and Computational Complexity, Tractable and Intractable problems, General purpose methods for combinatorial optimization. | 9 | | II | DESIGN RULES Layout Compaction-Design rules-problem formulation-algorithms for constraint graph compaction-placement and partitioning-Circuit representation-Placement algorithms-partitioning | 9 . | | Ш | FLOOR PLANNING Floor planning concepts, Shape functions and floorplan sizing, Types of local routing problems, Area routing, Channel routing, Global routing, Algorithms for global routing. | 9 | | IV | SIMULATION AND LOGIC SYNTHESIS Simulation, Gate-level modeling and simulation, Switch-level modeling and simulation, Combinational Logic Synthesis, Binary Decision Diagrams, Two Level Logic Synthesis. | 9 | | v | HIGH LEVEL SYNTHESIS Hardware models for high level synthesis, internal representation, allocation, assignment and scheduling, scheduling algorithms, Assignment problem, High level transformations. | 9 | | | Total Instructional Hours | 45 Hours | | Cour | CO1: Summarize the various physical design methods in VLSI CO2: Apply the various VLSI design rules. | | Outcome CO3: Outline the concept of floor planning and routing CO4: Demonstrate the concept of Simulation and Logic Synthesis CO5: Discuss the hardware models for high level synthesis # **TEXT BOOKS:** T1. N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers, 2002. T2. S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2002. ## REFERENCE BOOKS: R1. Sadiq M. Sait, Habib Youssef, "VLSI Physical Design automation: Theory and Practice", World Scientific 1999. R2. Steven M.Rubin, "Computer Aids for VLSI Design", Addison Wesley Publishing 1987. R3. S.M. Sait and H. Youssef, "VLSI physical design automation: theory and practice", World Scientific Pub. Co., 1999. R4. D.D. Gajski, N.D. Dutt, A.C. Wu and A.Y. Yin, "High-level synthesis: introduction to chip and system design", Kluwer Academic Publishers, 1992. EE - HICET | PROGRAMME
M.E. | | COURSE CODE
20AE2307 | PROFESSIONAL ELECTIVE-III NAME OF THE COURSE ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY | L
3 | T
0 | P
0 | | |---------------------|----------------|---
--|----------|--------|--------|--| | Course
Objective | 2.
3.
4. | Provide knowledge of
Identify the various to
Design PCB resistant | fundamentals that are essential for electronics industry in the fig
n various EMI sources and victims.
echniques used in EMC (Electromagnetic compatibility)
to EMI
nternational standards in EMI Measurements | ld of EM | ЛІ/ЕМС | | | | Unit | Description | Instructional
hours | |---------------|--|------------------------| | I | EMI/EMC CONCEPTS | | | | EMI-EMC definitions and Units of parameters; Sources and victim of EMI; Conducted and Radiated EMI | 9 | | | Emission and Susceptibility; Transient EMI, ESD; Radiation Hazards. | | | II | EMI COUPLING PRINCIPLES | | | | Sources of Conducted, and radiated interference; Interference coupling by Conduction and Radiation. | 9 | | | Common ground impedance coupling; Common mode and ground loop coupling; Differential mode | | | | coupling; Power mains and Power supply coupling | | | III | EMI CONTROL TECHNIQUES | | | | Shielding, Filtering, Grounding, Bonding, Isolation transformer, Transient suppressors, opto isolators, | 9 | | | Cable routing, Signal control | | | \mathbf{IV} | PCB DESIGN | | | | Transmitter, Receiver, Antenna,, Power Supply, Motors, Control devices, Digital Circuits, Digital | 9 | | | computer Integrated circuit sucessapility | | | \mathbf{V} | EMI MEASUREMENTS AND STANDARDS | | | | Open area test site; TEM cell; EMI test shielded chamber and shielded ferrite lined anechoic chamber; Tx | 9 | | | /Rx Antennas, Working Principles of EMI sensing Device; EMI Rx and spectrum analyzer; Civilian | , | | | standards-CISPR, FCC, IEC, EN; Military standards-MIL461E/462. | | | | Total instructional hours | 45 | CO1: Real world EMC deigns constraints and to achieve the most cost effective design that meets all requirements. CO2: Diagnose and solve the basic electromagnetic compatibility problems. Course Outcome CO3: Designing the electronic system that function without errors or problems that are related to electromagnetic CO4: Measuring the EMI with various methods and comparing it with standards. CO5: Controlling techniques for EMI and EMC. #### TEXT BOOKS: - T1. V.P.Kodali, "Engineering EMC Principles, Measurements and Technologies", IEEE Press, Newyork, - T2. S.Sathyamurthy "Basics of Electromagnetic Compatibility "sams publishers ,2008. # REFERENCE BOOKS: - R1. Henry W.Ott., "Noise Reduction Techniques in Electronic Systems", A Wiley Inter Science, 1992. - Bemhard Keiser, "Principles of Electromagnetic Compatibility", 3rd Ed, Artech house, 2008. - C.R.Paul,"Introduction to Electromagnetic Compatibility", John Wiley and Sons, Inc, 1992. - R4. Don R.J.White Consultant Incorporate, "Handbook of EMI/EMC", Vol I-V, 1988 eee - Hicet C 3 | PROGRAMME | | COURSE CODE | NAME OF THE COURSE | L | T | P | C | |--------------------------------|--|--|--|---|---------------------------------------|-----------------|--------| | M.E | | 20AE2308 | WIRELESS ADHOC AND SENSOR
NETWORKS | 3 | 0 | 0 | 3 | | | 1 | To understand the basics | of Ad-hoc & Sensor Networks. | | | | | | | 2 | | ental and emerging protocols of all layers | | | | | | Course | 3 | To study about the issue | s pertaining to major obstacles in establishment and | d efficien | t mar | nageme | ent of | | Objectives | 3 | Ad-hoc and sensor netwo | | | | | | | | 4 | | e and applications of Ad-hoc and sensor networks. | | | | | | | 5 | To understand various se | curity practices and protocols of Ad-hoc and Senso | r Networ | ks. | | | | Unit | | | Description | | Ins | structi
Hour | | | | | & TCP IN AD HOC NET | | | | | | | I | configu
Networ | ration-Issues in Ad-Hoc Viks – Contention Based | EEE 802.11 Architecture - Self configuration at Wireless Networks – MAC Protocols for Ad-Hoc Protocols - TCP over Ad-Hoc networks-TCP Solutions for TCP over Ad-Hoc Networks. | Wireless | | 9 | | | п | Routing
Approa | g in Ad-Hoc Networks
sches-Proactive, Reactive,
s - DREAM – Quorums | - Introduction-Topology based versus Position Hybrid Routing Approach-Principles and issues — based location service — Grid — Forwarding stra- ricted directional flooding- Hierarchical Routing- Is | Location
itegies — | | 9 | | | ш | Challer
MAC,
Introdu
conside
Physica
Zigbee
Mobile | nges in providing QoS. ROUTING & QOS IN Vection — Architecture — Parations — Energy Efficient Layer: Transceiver Desiration — Link Layer and Error Robots - Data Centric & | VIRELESS SENSOR NETWORKS Single node architecture – Sensor network nt Design principles for WSNs – Protocols for ign considerations – MAC Layer Protocols – IEEE Control issues - Routing Protocols – Mobile Note Contention Based Networking – Transport Protocols – Application Layer support | design
WSN –
802.15.4
odes and | | 9 | | | IV | Sensor
Time :
Networ | OR MANAGEMENT Management - Topology synchronization - Localiz k programming - Sensor I RITY IN AD HOC AND | | otocols -
l Sensor | | 9 | | | v. | Securit
based A
Secure | y in Ad-Hoc and Sensor
Anti-tamper techniques – v | networks – Key Distribution and Management – water marking techniques – Defense against routing - Broadcast authentication WSN protocols – TESL. | attacks - | | 9 | | | | | • | Total Instructiona | al Hours | | 45 | | | Course
Outcomes
TEXT BOO | CO1
CO2
CO3
CO4
CO5 | Analyze protocols devel
Identify and address the
Establish a Sensor netwo | in wireless ad hoc and sensor networks. oped for ad hoc and sensor networks. security threats in ad hoc and sensor rk environment for different type of applications. n Ad hoc and Sensor networks | | | | | | CSiv | | Murthy and R S Manoi | "Ad Hoc Wireless Networks - Architectures as | nd Proto | cols" | Pear | son | | T1 C.Siv | a Naill | muriny and b.s.manoj, | Au The Wheless Networks - Atchilectures a | 14 11010 | · · · · · · · · · · · · · · · · · · · | , i cai | SOIL | # TE - **T1** Education, 2004. - Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks Theory and Practice", **T2** John Wiley and Sons, 2010. #### REFERENCE BOOKS: - Carlos De Morais Cordeiro, Dharma Prakash Agrawal "Ad Hoc and Sensor Networks: Theory and Applications (2nd Edition), World Scientific Publishing, 2011. - C.K.Toh, "Ad Hoc Mobile Wireless Networks", Pearson Education, 2002. R2 - Holger Karl, Andrea's willig, "Protocols and Architectures for Wireless Sensor Networks, John Wiley & Sons, Inc - Subir Kumar Sarkar, T G Basavaraju, C Puttamadappa, "Ad Hoc Mobile Wireless Networks", Auerbach R4 AIC COU Publications, 2008. EEE - HICET | PROGRAMME M.E. | | COURSE CODE NAME OF THE COURSE 20AE2309 ROBOTICS AND INTELLIGENT SYSTEMS | L
3 | T
0 | P
0 | C
3 | |-------------------------------|---|--
--|----------------------|-----------------|--------| | Course
Objectiv | 3 | To Teach the basic concepts in robotics. To expose the various design aspects in robot grippers. To make learn various drives and control systems. To impart knowledge on machine vision systems. To apply robot based concepts for automation | | | | | | Unit | | Description | | | Instruct
Hou | | | 1 | Basic Co
Robotic
accuracy,
Automati
an Auton | DUCTION Incepts such as Definition, three laws, DOF, Misunderstood devices etc., Eler Systems i.e. Robot anatomy, Classification, Associated parameters i.e. repeatability, dexterity, compliance, RCC device, etc. Automation-Concepton in Production System, Principles and Strategies of Automation, Basic Elemated System, Advanced Automation Functions, Levels of Automations, introduction productivity. | solutio
t, Nee
nents o | n,
d,
of | 9 | | | п | ROBOT
Types of
Sensors for
application | GRIPPERS Grippers, Design aspect for gripper, Force analysis for various basic gripper or Robots:- Characteristics of sensing devices, Selections of sensors, Classifications of sensors. Types of Sensors, Need for sensors and vision system in the ol of a robot. | tion ar | ıd | 9 | | | Ш | Types of
transmiss
control .0
Verses D | AND CONTROL SYSTEMS Drives, Actuators and its selection while designing a robot system. To ion systems, Control Systems -Types of Controllers, Introduction to close Control Technologies in Automation:- Industrial Control Systems, Process In Discrete-Manufacturing Industries, Continuous Verses Discrete Control, Cond its Forms. Control System Components such as Sensors, Actuators and other | ed loc
idustric | p
es | 9 | | | IV | Vision Sy
programm
command
and VAL | NE VISION SYSTEM ystem Devices, Robot Programming: - Methods of robot programming, lead ning, motion interpolation, branching capabilities, WAIT, SIGNAL and ls, subroutines, Programming Languages: Introduction to various types such II etc, Features of type and development of languages for recent robot systems | DELA
as RAI | Y | 9 | | | V | Introduct: Plant,Mod manufact automatic and appl Economic | ING AND SIMULATION FOR MANUFACTURING PLANT AUTOMA' ion, need for system Modeling, Building Mathematical Model of a manufadern Tools- Artificial neural networks in manufacturing automation, uring, Fuzzy decision and control, robots and application of robon. Artificial Intelligence: Introduction to Artificial Intelligence, AI technique ication of AI. Other Topics in Robotics:- Socio-Economic aspect of robot al aspects for robot design, Safety for robot and associated mass, New Todates in robotics. | AI ots for the state of st | in
or
od
n. | 9 | | | Course Outcome TEXT BC T1 Joh | CO1
CO2
CO3
CO4
CO5 | Total Instructiona Ability to implement simple concepts associated with Robotics and Automati Ability to use various Robotic sub-systems Ability to use kinematics and dynamics to design exact working pattern of ro Ability to implement computer vison algorithms for robots Be aware of the associated recent updates in Robotics "Introduction to Robotics (Mechanics and Control)", Addison-Wesley, 2nd E | on
bots | | 45 | | ## TE - **T1** - Mikell P. Groover et. Al., "Industrial Robotics: Technology, Programming and Applications", McGraw Hill T2 International, 1986 # REFERENCE BOOKS: - Shimon Y. Nof, "Handbook of Industrial Robotics", John Wiley Co,2001. R1 - R2 Automation, "Production Systems and Computer Integrated Manufacturing", M.P. Groover, Pearson Education. - Richard D. Klafter, Thomas A. Chemielewski, Michael Negin, "Robotic Engineering: An Integrated Approach", R3 - Prentice Hall India, 2002. - R.C. Dorf, "Handbook of design, manufacturing & Automation" John Wiley and Sons. EEE - HICET # **SYLLABUS** ## SEMESTER III | PROGRAMME | COURSE CODE | NAME OF THE COURSE | | L | \mathbf{T} | P | \mathbf{C} | |---------------------|---|---|----|---|--------------|---|--------------| | M.E. | 16AP3201 | COMPUTER ARCHITECTURE AND PARALLEL PROCESSING | | 3 | 0 | 0 | 3 | | Course
Objective | Discriminate bety Infer memory tech Describe the perfet | ormance of various computer architectures. ween the various data processing architectures. hnology and measure its performances. ormance of various multiprocessor architectures as multi core architectures. | s. | | | | | | Unit | Description | Instructional
Hours | |-------------|---|------------------------| | I | COMPUTER DESIGN AND PERFORMANCE MEASURES Concepts of Computer Design – Parallel and Scalable Architectures – Multiprocessors – Multivector and SIMD architectures - Multi threaded architectures – Data-flow architectures - Performance Measures. | 9 | | П | PARALLEL PROCESSING, PIPELINING AND ILP Instruction Level Parallelism and Its Exploitation - Concepts and Challenges - Overcoming Data Hazard with Dynamic Scheduling Dynamic Branch Prediction - Speculation - Multiple Issue Processors - Performance and Efficiency in Advanced Multiple Issue Processors. | 9 | | III | MEMORY HIERARCHY DESIGN Memory Hierarchy - Memory Technology and Optimizations - Cache memory - Optimizations of Cache Performance - Memory Protection and Virtual Memory - Design of Memory Hierarchies. | 9 | | IV | MULTIPROCESSOR Symmetric and distributed shared memory architectures —Cache coherence issues — Performance Issues — Synchronization issues — Models of Memory Consistency -Interconnection networks — Buses, crossbar and multistage switches. | 9 | | V | MULTI-CORE ARCHITECTURES Software and hardware multithreading – SMT and CMP architectures – Design issues –Case studies – Intel Multi-core architecture ARM processor Multicore architecture – BUS protocol for Multicore architecture. | 9 | | | Total Instructional Hours | 45 | | Cou
outc | CO3: Design memories under various hierarchies. | | ## TEXT BOOKS: - T1. Kai Hwang, "Advanced Computer Architecture", McGraw Hill International, 2001. - T2. John L. Hennessey and David A. Patterson, "Computer Architecture A quantitative approach", Morgan Kaufmann / Elsevier, 4th Edition, 2007. ### REFERENCE BOOKS: - R1. David E. Culler, Jaswinder Pal Singh, "Parallel Computing Architecture: A hardware/ software Approach", Morgan Kaufmann / Elsevier, 1997. - R2. John P. Shen, "Modern processor design. Fundamentals of super scalar processors", Tata McGraw Hill 2003. - R3. William Stallings, "Computer Organization and Architecture Designing for Performance", Pearson Education, Seventh Edition, 2006. Chairman - BoS EEE - HICET Dean (Academics) 20 | PROGRAMI | ME COURSE CODE | NAME OF THE COURSE | L | T | P | \mathbf{C} | |---------------------|---|---|---|---------|--------|--------------| | M.E. | 16AP3001 | ELECTRONICS SYSTEM DESIGN LABORATORY | 0 | 0 | 4 | 2 | | Course
Objective | Design system using 8086 at Study the different interfaces Intend and analysis of real ti | s using Embedded Microcontroller.
me signal processing system.
d electronics system (Analog and Digital
Sys | | erent j | proces | S. | | Expt.
No. | Description of the experiments | | | | | | |--------------|---|--|--|--|--|--| | 1 | System design using PIC, MSP430, '51 Microcontroller and 16- bit Microprocessor - 8086. | | | | | | | 2 | Study of different interfaces (using Embedded Microcontroller). | | | | | | | 3 | Implementation of Adaptive Filters and multistage multirate system in DSP Processor. | | | | | | | 4 | Simulation of QMF using Simulation Packages. | | | | | | | 5 | Analysis of Asynchronous and clocked synchronous sequential circuits. | | | | | | | 6 | Built in self test and fault diagnosis. | | | | | | | 7 | Sensor design using simulation tools. | | | | | | | 8 | Design and analysis of real time signal processing system-Data acquisition and signal Processing. | | | | | | | | Total Practical Hours 45 | | | | | | | Cou
Outc | CO3: Analyze Synchronous and Asynchronous sequential circuits. | | | | | | Chairman - Bos EEE - HiCET Chairman Day | PROGRAMME | COURSE CODE | NAME OF THE COURSE | L | T | P | C | |-----------|-------------|--------------------|---|---|----|---| | M.E. | 16AP3901 | PROJECT PHASE - I | 0 | 0 | 12 | 6 | 1. Analyze a methodology to select a project and able to develop a hardware/software project. Course Transform the ideas behind the project with clarity. Objective Validate the technical report. #### Description of the project work A candidate is permitted to work on projects in an Industrial / Research Organization, on the recommendations of the Head of the Department concerned. A project must be selected either from research literature published list or the students themselves may propose suitable topics in consultation with their guide. The aim of the project work is to strengthen the comprehension of principles by applying them to a new problem which may be the design and manufacture of a device, a research investigation or a design problem. The project work shall be supervised by a supervisor of the department, (and an expert in industry if it is a industrial project), and the student shall be instructed to meet the supervisor periodically and to attend the review committee meeting for evaluation of the progress. In case of candidates not completing Phase-I of project work successfully, the candidates can undertake Phase-I again in the subsequent semester. In such cases the candidates can enroll for Phase-II, only after successful completion of Phase-I. The Project report shall be prepared and submitted according to the approved guidelines as given by the Controller of Examination and bonafied duly signed by Supervisor and the Head of the Department. CO1: Realize the skills acquired in the previous semesters to solve complex engineering problems. CO2: Build up an innovative model / prototype of an idea related to the field of specialization. CO3: Create the work individually to identify, troubleshoot and build products for environmental and Outcome Course CO4: Effective presentation of ideas with clarity. CO5: Evaluate surveys towards developing a product which helps in life time learning. eee - Hicet #### SEMESTER IV | PROGRAMMI | E COURSE CODE | NAME OF THE COURSE | L | T | P | C | |--|---------------|--------------------|---|---|----|----| | M.E. | 16AP4902 | PROJECT PHASE - II | 0 | 0 | 24 | 12 | | Analyze a methodology to select a project and able to develop a hardware/software project. Course Transform the ideas behind the project with clarity. Validate the technical report. | | | | | | | ## Description of the project work The Project work (Phase II) shall be pursued for a minimum prescribed period as per regulation. The project work shall be supervised by a supervisor of the department, (and an expert in industry if it is a industrial project), and the student shall be instructed to meet the supervisor periodically and to attend the review committee meeting for evaluation of the progress. The Project report shall be prepared and submitted according to the approved guidelines as given by the Controller of Examination and bonafied duly signed by Supervisor and the Head of the Department. | | CO1: Realize the skills acquired in the previous semesters to solve complex engineering problems. CO2: Build up an innovative model / prototype of an idea related to the field of specialization. | |---------|--| | Course | CO3: Create the work individually to identify, troubleshoot and build products for environmental and | | Outcome | societal issues. | | | CO4: Effective presentation of ideas with clarity. | | | CO5: Evaluate surveys towards developing a product which helps in life time learning. | hairman - BoS EEE - HiCET ## PROFESSIONAL ELECTIVE V | PROGRAMME | COURSE CODE | NAME OF THE COURSE | L | T | P | C | |---------------------|--|--|---|---|---|---| | M.E. | 16AP3301 | TESTING OF VLSI
CIRCUITS | 3 | 0 | 0 | 3 | | Course
Objective | Recall the basics of co Gain knowledge on te Learn algorithms for te | n testing of VLSI circuits. mbinational and sequential circuits. sting of logic circuits. esting the logical circuits. combinational and logic circuits. | , | | | | | Unit | Description | Instructional
Hours | |------|--|------------------------| | I | TESTING AND FAULT MODELLING Introduction to testing – Faults in Digital Circuits – Modelling of faults – Logical Fault Models – Fault detection – Fault Location – Fault dominance – Logic simulation – Types of simulation – Delay models – Gate Level Event – driven simulation. | 9 | | II | TEST GENERATION FOR COMBINATIONAL AND SEQUENTIAL CIRCUITS Test generation for combinational logic circuits – Testable combinational logic circuit design – Test generation for sequential circuits – design of testable sequential circuits. | 9 | | III | DESIGN FOR TESTABILITY Design for Testability – Ad-hoc design – Generic scan based design – Classical scan based design – System level DFT approaches. | 9 | | IV | SELF - TEST AND TEST ALGORITHMS Built-In self Test - Test pattern generation for BIST - Circular BIST - BIST Architectures - Testable Memory Design - Test Algorithms - Test generation for Embedded RAMs. | 9 | | V | FAULT DIAGNOSIS Logical Level Diagnosis – Diagnosis by UUT reduction – Fault Diagnosis for Combinational Circuits – Self-checking design – System Level Diagnosis. | 9 | | | Total Instructional Hours | 45 | CO1: Design models of various fault diagnosis circuits. Course Outcome - CO2: Construct test circuit for combinational and sequential processes. - CO3: Analyze the various test generation methods for logic circuits. - CO4: Employ the appropriate design algorithm for constructing logic circuits. - CO5: Suggest suitable circuit for fault diagnosis. ## TEXT BOOKS: - T1. M.Abramovici, M.A.Breuer and A.D. Friedman, "Digital systems and Testable Design", Jaico Publishing House, 2002. - T2. P.K. Lala, "Digital Circuit Testing and Testability", Academic Press, 2002. # REFERENCE BOOKS: R1. M.L.Bushnell and V.D.Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2002. R2. A.L.Crouch, "Design Test for Digital IC's and Embedded Core Systems", Prentice Hall International, 2002. Chairman - BoS REE - HICET Chalrman HOLLEGE OF THE | PROGRAMME | COURSE CODE | NAME OF THE COURSE | L | T | P | C | |---------------------|--|--------------------|---|---|---|---| | M.E. | 16AP3302 | PHOTONICS | 3 | 0 | 0 | 3 | | Course
Objective | Gain knowledge on light and its propagation. Analyze the performance of bistable LASER diodes. Distinguish the performance issues in LASER diodes. Design electronic circuits for wavelength selection and photo detection Propose suitable applications for photonic switching. | | | | | | | Unit | Description | Instructional
Hours | | | | |-------------|---|------------------------|--|--|--| | I | INTRODUCTION Function semiconductor laser - Basic concepts of semi conductor laser - Semi conductor quantum wells - Vertical cavity surface emitting lasers - Non linear effects in semiconductor lasers. | 9 | | | | | П | BISTABLE LASER DIODES Optical Bistability - Bistable switches - Inhomogeneous current injections - absorptive scheme -
Dispersive bistable laser diodes - Injection locking - Bistability in laser diode amplifiers - wavelength, power and polarization bistability. SELF PULSATION & ULTRA SHORT PULSE GENERATORS | 9 | | | | | III | Self pulsation-theory of self pulsation in laser diodes, Period doubling in modulated laser diodes - Optical chaos - Mode locking in laser diodes - Monolithic mode locked laser diodes. WAVELENGTH SELECTION AND WAVELENGTH SELECTIVE | 9 | | | | | IV | PHOTODETECTION Wavelength selection - Laser diode amplifier filters - DFB laser diode amplifier - Signal selection, Noise properties and Wavelength selection photo detectors. APPLICATIONS OF PHOTONIC SWITCHING | 9 | | | | | V | High speed data transmission systems - Clock distribution - All optical fibre communication systems - Clock extraction & dispersion compensation - WDM systems - optical exchange systems - Time division & wavelength division switching - Power mixing & Frequency division switching - Space switches. | | | | | | | Total Instructional Hours | 45 | | | | | Cou
Outc | | on. | | | | # TEXT BOOKS: - T1. H. Kawaguchi, "Bistabilities and Non-linearities in Laser Diodes", Artech house Inc, Norwood, 1994. - T2. Saleh, B. E. A., and M. C. Teich., "Fundamentals of Photonics", New York, NY: Wiley, 1991. ## REFERENCE BOOKS: - Sueta and Okoshi, "Fundamental of Ultra fast & Ultra Parallel Opto Electronics", John Wiley & Sons, New York. 1996. - R2. K. Tada and Hinton. H.S., "Photonic Switching II", Springer Verlag, Berlin, 1990. Chakman - BoS EEE - HICET Chairman 2011 | PROGRAMME | COURSE CODE | NAME OF THE COURSE | L | T | P | C | |---------------------|--|---|---|---|---|---| | M.E. | 16AP3303 | NANO ELECTRONICS | 3 | 0 | 0 | 3 | | Course
Objective | Analyze various propositions Understand the important Infer the basics of name | tance of quantum dots in nano structures. | | | | | | Unit | Description | Instructional
Hours | | | | | | |------|---|------------------------|--|--|--|--|--| | I | INTRODUCTION Electronic states in crystal energy bands - 1 D nanostructures (quantum wires) - OD nanostructures (quantum dots) - Concepts of 2 and 3D nanostructures (quantum wells), artificial atomic clusters. | 9 | | | | | | | II | FABRICATION AND MEASUREMENT TECHNIQUES Size dependent properties - Size dependent absorption spectra - Blue shift with smaller sizes - Phonons in nanostructures - Contacts at Nano level - AFM (classification) - ISTM tip on a surface. | | | | | | | | Ш | PROPERTIES Charging of quantum dots - Coulomb blockade - Quantum mechanical treatment of quantum wells - wires and dots - Widening of band gap in quantum dots - Strong and weak confinement - Properties of coupled quantum dots - Optical scattering from Nano defects. | | | | | | | | IV | NANO STRUCTURE DEVICES Nano composites – Ceramic - Polymer and metal material composites - Electronic and atomic structure of aggregates and nano particles - Theory and modeling of nano particles fictionalization processes - organic electronics. | | | | | | | | V | LOGIC DEVICES AND APPLICATIONS Nano systems -Synthesis and characterization methods - Molecular beam epitaxy - MOCVD - chemical routes - nano particles of polymers - pulsed laser deposition - ion beam assisted techniques including embedded nano particles - RF sputteringInert gas condensation. | | | | | | | | | Total Instructional Hours | 45 | | | | | | | | CO1: Summarize the concepts on various dimensional nanostructures. CO2: Compile the properties of nanostructure. CO3: Recognize the basics of nanostructure devices and logic devices. CO4: Compile the performance of nano structure devices. CO5: Categories the application circuits of nano structures. | | | | | | | # TEXT BOOKS: - T1. K.Bamam and D.Vvedensky "Low Dimensional Semiconductor Structures", Cambridge University Book, 2001 - T2. L.Banyai and S.W.Koch, "Semiconductor Quantum Dots", World Scientific, 1993. # REFERENCE BOOKS: R1. J.H. Davies, "An introduction to the physics-a low dimensional semiconductors", Cambridge Press, 1998. R2. Karl Goser, Peter Glosekotter, Jan Dienstuhl., "Nanoelectronics and Nanosystems", Springer, 2004. Chairman - BoS Champan 888 | PROGRAMME
M.E. | COURSE CODE
16AP3304 | NAME OF THE COURSE
INTERNETWORKING AND
MULTIMEDIA | L
3 | T
0 | P
0 | C
3 | |---|--|---|--------|--------|--------|-------------------| | Course
Objective | Identify and analyze the requirements of multimedia communication network. Infer the basics of broad band technology. Learn the basics of reliable transport protocols. Infer about various multimedia communication standards and architectures. Analyze the process involved in data transmission across various networks. | | | | | | | Unit | Description | | | | | uctional
Iours | | MULTIMEDIA NETWORKING Digital Sound, Video and Graphics – Basic Multimedia Networking – Multimedia Characteristics – Evolution of Internet Services Model – Network Requirements for Audio/ Video Transform – Multimedia Coding and Compression for Text Image Audio And Video | | | | | | 9 | | I | Digital Sound, Video and Graphics – Basic Multimedia Networking – Multimedia Characteristics – Evolution of Internet Services Model – Network Requirements for Audio/ Video Transform – | 9 | |-----|---|---| | | Multimedia Coding and Compression for Text, Image Audio And Video. | | | | BROADBAND NETWORK TECHNOLOGY | | | | Broadband Services - ATM and IP, IPV6, High Speed Switching - Resource Reservation - Buffer | | | II | Management - Traffic Shaping - Caching - Scheduling and Policing - Throughput - Delay and | 9 | | | Jitter Performance - Storage and Media Services - Voice and Video over IP - MPEG-2 over | | | | ATM/IP – Indexing Synchronization of Requests – Recording and Remote Control. | | | | RELIABLE TRANSPORT PROTOCOL AND APPLICATIONS | | | III | Multicast over Shared Media Network - Multicast Routing and Addressing - Scaling Multicast | 9 | | | and NBMA Networks - Reliable Transport Protocols - TCP Adaptation Algorithm - RTP - RTCP | | | | - MIME - Peer-to-Peer Computing - Shared Application - SIP - SDP. | | | | MULTIMEDIA COMMUNICATION STANDARDS | | | | Objective of MPEG – 7 Standards – Functionalities and Systems of MPEG–7 MPEG–21 | _ | | IV | Multimedia Framework Architecture – Content Representation – Content Management and Usage | 9 | | | - Intellectual Property Management - Audio Visual System - H264: Guaranteed QOS LAN | | | | Systems – MPEG_4 Video Transport Across Internet. | | | | MULTIMEDIA COMMUNICATION ACROSS NETWORKS | | | | Packet Audio/Video in The Network Environment -Video Transport Across Generic Networks - | _ | | V | Layered Video Coding- Error Resilient Video Coding Techniques - Scalable Rate Control - | 9 | | | Streaming Video Across Internet – Multimedia Transport Across ATM Networks and IP Network | | | | - Multimedia Across Wireless Networks . | | | | | | dia Across Wireless Networks . Total Instructional Hours CO1: Describe different realizations of multimedia tools and the way in which they are used. CO2: Summarize the structure of broad band techniques and its associated standards. CO3: Design a suitable application using reliable transport protocols. CO4: Compare and contrast different multimedia standards. # TEXT BOOKS: Course Outcome T1. B. O. Szuprowicz, "Multimedia Networking", McGraw Hill, Newyork, 1995. CO5: Discuss the data transfer process across various networks. K. R. Rao, Zoran S, Bojkovic and Dragorad A, Milovanovic "Multimedia communication systems", PHI, 2003. # REFERENCE BOOKS: R1. Jon Crowcroft, Mark Handley, Ian Wakeman "Internetworking Multimedia" Harcourt, Singapore, 1998. R2. Tay Vaughan, "Multimedia making it to work", 4th edition Tata McGraw Hill, New Delhi, 2000. hanman - BoS EEE - HICET Chairman 29 Dean (Academics) 45 | PRO | GRAMME | CO | OURSE CODE | NAME OF THE COURSE | \mathbf{L} | T | P | C | | | |------|--|----------------------------|--|--|----------------------------------|--------
---------------|---------|--|--| | | M.E. | | 16AP3305 | ASIC DESIGN | 3 | 0 | 0 | 3 | | | | | 1. Study the design flow of different types of ASIC. 2. Discuss the architecture of ASIC. 3. Gain knowledge on partitioning, floor planning, placement and routing include extraction of ASIC. 4. Learn about different high performance algorithms and its applications in ASICs. 5. Infer about the partitioning and routing methods in ASIC circuits. | | | | | | | | | | | Unit | | |] | Description | | - | Hours | | | | | I | Types of ASIC | cs - | Design flow - CMOS tra | OGIC AND ASIC LIBRARY DESIGN ansistors CMOS Design rules — Combirgic cell - Transistors as Resistors - Trans | national Logi
sistor Parasiti | c
c | 9 | | | | | II | Capacitance- I
PROGRAMM
AND program
PREP benchm | ogio
IAB
mab
arks | cal effort –Library cell de
LE ASICS, PROGRAM
le ASIC I/O cells anti fu | esign - Library architecture.
IMABLE ASIC LOGIC CELLS
se - static RAM - EPROM and EEPROM
CA –Altera FLEX - Altera MAX DC & A | I technology | - | 9 | | | | | Ш | PROGRAMM
ASIC DESIGN
Actel ACT -X
Altera FLEX -
design language | AB
NSC
Cilin:
Des | LE ASIC INTERCONN DETWARE AND LOW x LCA - Xilinx EPLD - tign systems - Logic Syn PLA tools -EDIF- CFI de | ECT, PROGRAMMABLE LEVEL DESIGN ENTRY - Altera MAX 5000 and 7000 - Altera thesis - Half gate ASIC -Schematic entry sign representation. | MAX 9000
y – Low leve | -
1 | 9 | | | | | IV | Verilog and log
test - fault sim | gic s
ulati | on - Automatic test patte | gic synthesis - Types of simulation —Bou
orn generation. | | | 9 | Ę | | | | V | System partition | n - | FPGA partitioning - parti | NING, PLACEMENT AND ROUTING
tioning methods - floor planning - placem
ng - special routing - circuit extraction - D | ent - physica
DRC. | | 9 | | | | | | æ (| CO1 | : Analyze the characterist device for fabrication. | Total Instruction and performance of ASICs and judge | | | 45
best su | | | | | Outo | come | CO3
CO4 | : Conducting research in
: Solve design issues and
: Apply appropriate tech
: Design the ASIC circuit | simulate and Test ASICs. niques, resources and tools to develop AS | SICs for engi | ineeri | ing act | ivities | | | ## **TEXT BOOKS:** - M.J.S. Smith, "Application Specific Integrated Circuits", Addison Wesley Longman Inc., 1997. T1. - Farzad Nekoogar and Faranak Nekoogar, "From ASICs to SOCs: A Practical Approach", Prentice Hall T2. PTR, 2003. # REFERENCE BOOKS: - R1. - Wayne Wolf, "FPGA-Based System Design", Prentice Hall PTR, 2004. Rajsuman, "System-on-a-Chip Design and Test", Santa Clara, CA: Artech House Publishers, 2000. R2. - F. Nekoogar, "Timing Verification of Application-Specific Integrated Circuits (ASICs)", Prentice Hall PTR, R3 EEE - HICET ## PROFESSIONAL ELECTIVE VI NAME OF THE COURSE L \mathbf{C} | 11001111111 | | | | | • | - | ~ | | |---------------------|---|--|--|----------------------|---------|---------------|----------------|--| | | M.E. | 16AP3306 | ROBOTICS | 3 | 0 | 0 | 3 | | | Course
Objective | | | vision system. | | | | a | | | Unit | | | Description | |] | Instruc
Ho | ctional
urs | | | I | Function, Redecomposition | assification, Robot Specific
oad maps- Topological roa
ons, Sensor and sensor p
tion matrix and DH transf
ethods. | ations, Motion — Bug and tangent algorithms
dmaps, Cell decomposition — Trapezoidal and
lanning- Kinematics-Forward and Inverse Kir
formation-Inverse Kinematics - Geometric me | Morse ce
nematics | 11
- | 9 |) | | | II | Projection –
Connectivity
Convolution
Mono and S | Optics - Projection on the
y - Images-Gray Scale and | e Image Plane and Radiometry Image Proc
Binary Images - Blob Filling - Thresholding, I
d Filtering and Masking Techniques- Edge D | Histogram | | 9 |) | | | III | Introduction
Distance and
sensing, touc | to various types of sens
d Ranging), Sonar, Radar a
ch sensing and Position calc | or- Resistive sensors. Range sensors - LADA
and Infra-red- Introduction to sensing - Light ser-
culating by using mono-vision camera. | | | 9 | Ř. | | | IV | Uniform Sea
depth first s
Space Plann
agent planni
inference. | RTIFICIAL INTELLIGENCE niform Search strategies - Breadth first - Depth first - Depth limited - Iterative and deepening epth first search and Bidirectional search - algorithm- Planning - State-Space Planning Plan- pace Planning - Graph plan/Sat Plan and their Comparison - Multi-agent planning and Multi- gent planning - Probabilistic Reasoning - Bayesian Networks - Decision Trees and Bayes net ference. | | | | | | | | V | Building of | FION TO ROBOT
4 axis or 6 axis robot - Visic
AI algorithms for path findir | on System for pattern detection - Sensors for obs
ag and decision making. | tacle | | 9 |) | | | | | | Total Instructio | nal Hou | rs. | 4: | 5 | | | Cou
Outc | ome CO | | arnt about robotic vision system. Perential motion and control. Its in various applications. | | | | | | # **TEXT BOOKS:** **PROGRAMME** **COURSE CODE** - T1. Duda, Hart and Stork, "Pattern Recognition", Wiley-Inter science, 2000. - T2. Mallot, "Computational Vision: Information Processing in Perception and Visual Behavior", Cambridge, 2000. # REFERENCE BOOKS: - R1. Stuart Russell and Peter Norvig, "Artificial Intelligence-A Modern Approach", Pearson Education Series in Artificial Intelligence, 2004. - R2. Robert Schilling and Craig, "Fundamentals of Robotics: Analysis and Control", Hall of India Private Limited, 2003. - R3 Forsyth and Ponce, "Computer Vision: A Modern Approach", Person Education, 2003. Chairman - BoS EEE - HiCET Chairman 250 | M.E. | | 16AP3307 | MEM | IS AND NEMS | 3 | | 0 | 0 | 3 | |--------------|---|---|---|--|------------------------|------------|--------------------|--------------|------------------------| | Cou
Objec | | Infer the fabricat
Design MEMS s
Discuss about so | of micro electromecha
ion process of Microsy
ensor.
aling and packaging is
oplication for MEMS. | ssues in MEMS. | | | | | | | Unit | | | Description | n | | | | | Instructional
Hours | | I | OVERVIEW AND INTRODUCTION MEMS and NEMS – working principles - MEMS processes & features, various components of MEMS, applications and standards, micromachining, basic process tools – epitaxy – sputtering - chemical vapor deposition and spin on methods – oxidation – evaporation - lithography and etching - advanced process tools - sol gel process - EFAB. | | | | | | | 9 | | | II | MATERIALS FOR MEMS AND ENGINEERING ASPECTS Silicon - Silicon oxide and nitride - Thin metal films - Polymers - Other materials and substrates - polycrystalline materials - mechanics of Microsystems - static bending -mechanical vibrations - thermo mechanics - fracture mechanism - fatigue - and stress and strain - young's modulus and modulus of rigidity - scaling laws in miniaturization. MEMS SENSORS, DESIGN AND PROCESSING | | | | | | 9 | | | | Ш | Micro sensor
capacitive se
electrostatic
devices) - des | rs (acoustic wave
ensors- pressure se
actuators- microm
sign consideration | sensors- biomedical
nsors- thermal sensor
eters- micro valves of
process design and m | | thermal- | piez | zoeleci | tric- | 9 | | IV | MEMS/NEMS SCALING ISSUES AND PACKAGING Introduction – Scaling of physical systems – Mechanical system scaling, Thermal system scaling - Fluidic system scaling - Electrical system scaling - Packaging - mechanical and micro system package - design considerations - Process steps - Die preparation – interconnects - surface and Wafer bonding - wire bonding and scaling - 3D packaging and assembly signal Thermal management - Hermetic packaging, Electrical / Micro fluidic / and optical interconnects - Signal mapping transduction - Micro fluidic technology - MEMS and NEMS technology for micro fluidic devices. MEMS/NEMS APPLICATIONS | | | | | | 9 | | | | V | Applications – lab on chip | in automotive indu
o – molecular macl | stry – health care – aei | rospace – industrial prode
evices – micro reactor – | uct consu
- telecom | me:
mur | r produ
nicatio | ucts
ns - | 9 | | | Servo system | | | Tota | al Instru | etio | nal Ho | ours | 45 | | Cou
Outco | ome CO2 | 2: Describe the mat
3: Design and analy
4: Summarize MEM | damentals of MEMS. erials used for MEMS sis of MEMS sensors IS / NEMS scaling
issications of MEMS. | and actuators. | | | | | | NAME OF THE COURSE # TEXT BOOKS: PROGRAMME COURSE CODE - Nadim Malut and Kirt Williams, "An introduction to Micro electro mechanical systems Engineering", Artech House Inc, Boston, Second edition, 2004. - T2. James J Allen, "Micro electro mechanical systems Design", CRC Press, Taylor and Francis Group, 2001. ### REFERENCE BOOKS: - R1. Nicolae Lobontiu and Ephrahim Garcia Kluwer, "Mechanics of micro electro mechanical systems", Academic Publishers, Boston, 2001. - R2. Ivor Brodie and Julius J.Muray, "The Physics of Micro/Nano Fabrication", Springer Science & Business Media, 2013. - R3 Kaoru Ohno, Masatoshi Tanaka, Jun Takeda and Yoshijuki Kawazoe, "Nano and Micromaterials", Springer Science & Business Media, 2008. Charman - Bos EEE - HICET Chairman Sold Dean (Academics) \mathbf{C} | PROGRAMME | | COURSE CODE | NAME OF THE COURSE | L | T P | C | | |---------------------|---|-------------|--|---|------------------------|------|--| | M.E. | | 16AP3308 | SYSTEM ON CHIP
DESIGN | | 0 0 | 3 | | | Course
Objective | 5 C C C C C C C C C C C C C C C C C C C | | | | | iect | | | Unit | | Description | | | Instructional
Hours | | | | LOGIC GATES | | | | | | | | | | | | Functions- Static Complementary Gates- | C | 9 |) | | | | | 110018 | |------|---|--------| | I | LOGIC GATES Introduction- Combinational Logic Functions- Static Complementary Gates- Switch Logic-Alternative Gate Circuits- Low - Power Gates- Delay Through Resistive Interconnect - Delay | 9 | | II | Through Inductive Interconnect. COMBINATIONAL LOGIC NETWORKS Introduction- Standard Cell - Based Layout- Simulation- Combinational Network Delay- Logic and interconnect Design- Power Optimization- Switch Logic Networks- Combinational Logic Testing. | 9 | | III | SEQUENTIAL MACHINES Introduction- Latches and Flip - Flops- Sequential Systems and Clocking Disciplines- Sequential System Design-Power Optimization- Design Validation- Sequential Testing. | 9 | | IV | SUBSYSTEM DESIGN Introduction- Subsystem Design Principles- Combinational Shifters- Adders- ALUs- Multipliers- High - Density Memory- Field Programmable Gate Arrays- Programmable Logic Arrays- References- Problems. | 9 | | V | FLOOR-PLANNING Introduction - Floor - planning Methods - Block Placement & Channel Definition- Global Routing- switchbox Routing- Power Distribution- Clock Distributions- Floor - planning Tips- Design Validation- Off - Chip Connections - Packages- The I/O Architecture- and PAD Design. | 9 | | | Total Instructional Hours | 45 | | Cour | CO1: Design logic gates with minimum size, spacing, and parasitic values. CO2: Suggest suitable design for logic gates with minimum size, spacing, and parasitic values. | | Outcome CO3: Design combinational logic machines with optimum power. CO4: Learn the design principles of FPGA and PLA. CO5: Suggest various floor planning methods for system design. # TEXT BOOKS: - Wayne Wolf, "Modern VLSI Design System on Chip Design", Prentice Hall, 3rd Edition, 2008. - T2. Michael J. Flynn, Wayne Luk, "Computer System Design: System-on-Chip", Wiley Publications, 2003. #### REFERENCE BOOKS: - R1. Michel Robert, Bruno Rouzeyre, Christian Piguet, Marie-Lise Flottes, "SOC Design Methodologies", Springer Science & Business Media, 2001. - R2. Steve Furber, "Arm System-On-Chip Architecture", second edition, Pearson Education India, 2002 - R3 Peter J. Ashenden, Jean Mermet, Ralf Seepold, "System-on-Chip Methodologies & Design Languages", Springer Science & Business Media, 2002. EEE - HICET demics | INO | GRAMME | COURSE CODE | | | | | | |------|---|--|--|-------------------------------|------------|-------------|---| | | M.E. | 16AP3309 | WIRELESS ADHOC AND
SENSOR NETWORKS | 3 | 0 (| | 3 | | | urse
ctive | perspective. 2. Learn different types of M 3. Infer basics of adhoc rout 4. Study the TCP issues in a | ing protocols. | | | | | | Unit | Description | | | | Instr
H | ucti
our | | | I | propagation M
(MANETs) and | of Wireless Communication Tech
fechanisms - Characteristics of | nnology – The Electromagnetic Spect
the Wireless Channel -mobile ad h
(s): concepts and architectures. Applic
Ad hoc and Sensor Networks. | oc networks | | 9 | | | II | Issues in desi
protocols- Con | OCOLS FOR AD HOC WIREL igning a MAC Protocol- Class attention based protocols with Result Mechanisms – Multi channel | ification of MAC Protocols- Conte
ervation Mechanisms- Contention bas | ention based
sed protocols | | 9 | | | III | NETWORKS Issues in desig Reactive routi | ning a routing and Transport Laye | PORT LAYER IN AD HOC er protocol for Ad hoc networks- proa Classification of Transport Layer so | ctive routing, | | 9 | | | IV | Single node as
architecture: t | ypical network architectures-data | AND MAC PROTOCOLS re components of a sensor node - W relaying and aggregation strategies A and CSMA based MAC- IEEE 802. | -MAC layer | | 9 | | | V | Issues in WSN | ocalization, triangulation-QOS in | Indoor and Sensor Network Localiza
MSN-Energy Efficient Design-Syr | tion-absolute | | 9 | | | | | | Total Instruc | tional Hours | | 45 | | | | ourse
atcome | CO2: Analyze protocols develo
CO3: Identify and understand s
CO4: Infer the architectures and | n wireless ad hoc and sensor networks
ped for ad hoc and sensor networks.
ecurity issues in ad hoc and sensor net
discourity issues associated with multion
performance measurements of ad hoc | works.
east routing. | tworks. | | | NAME OF THE COURSE COURSE CODE **PROGRAMME** T P \mathbf{C} ## **TEXT BOOKS:** - T1. C.Siva Ram Murthy and B.S.Manoj, "Ad Hoc Wireless Networks Architectures and Protocols", Pearson Education, 2004. - T2. Carlos De Morais Cordeiro, Dharma Prakash Agrawal, "Ad Hoc and Sensor Networks: Theory and Applications (2nd Edition)", World Scientific Publishing, 2011. #### REFERENCE BOOKS: - Holger Karl, Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", John Wiley & Sons, Inc., 2005. - R2. C.K.Toh, "Ad Hoc Mobile Wireless Networks", Pearson Education, 2009. - R3 Subir Kumar Sarkar, T G Basavaraju, C Puttamadappa, "Ad Hoc Mobile Wireless Networks", Auerbach Publications, 2008. CKARMAN - BOS EEE - HICET Chairman St. College of the | PROGRAMME COURSE CODE | | COURSE CODE | NAME OF THE COURSE | | T | P | C | | | |-----------------------|---|--|---|-----------------------|------|--------|------|--|--| | M.E. | | 16AP3310 | APPLIED MEDICAL IMAGE PROCESSING | 3 | 0 | 0 | 3 | | | | | Course
bjective | 2. Discuss 3. Gather k medical 4. Classify | about various medical imaging techniques. mowledge on various forms of representationages. the ways of representing medical images. thods of medical image visualization. | | Inst | ructio | onal | | | | Unit | | | Description | | | Hours |
 | | | I | Image pe
model- In
Image qua
DFT and | rception- MTF of t
nage sampling and o
antization- Optimum
other transforms. Im | | g theory-
ns – 2D- | | 9 | | | | | II | BASICS (
Radiology
Resonance | point operation- Histogram modeling- spatial operations- Transform operations. BASICS OF MEDICAL IMAGE SOURCES Radiology- The electromagnetic spectrum-Computed Tomography - Magnetic Resonance Tomography - ultrasound-nuclear medicine and molecular imaging- radiation protection and dosimetry. | | | | | | | | | III | Pixels and representation formats- A - Image quantation | ntion- depth-colorand
Analyze 7.5 - NifTI a
uality and the signal t | image operations - gray scale and color
I look up tables - image file formats- DICC
and Interfile
to noise ratio- MATLAB based simple oper | | | 9 | | | | | IV | Image se
representa
Shape- Te | gmentation- pixel ation and analysis- | SIS AND CLASSIFICATION - edge - region based segmentation Feature extraction and representation- St nage classification - Statistical- Rule based | tatistical- | | 9 | | | | | V | Rigid boo
registratio
Image vis | ly visualization- Pri
on- Feature based re | AND VISUALIZATION ncipal axis registration- Interactive princ gistration- Elastic deformation based reg play methods- 3D display methods- virtu- | istration- | | 9 | | | | | | | | Total Instruction | al Hours | | 45 | | | | | | Course
Outcome | medical image
CO2: Suggest:
health complic
CO3: Point out
data.
CO4: Elaborate | suitable imaging technique for | ion. | | | | | | # TEXT BOOKS: - Wolfgang Birkfellner, "Applied Medical Image Processing A Basic course", CRC Press, 2011. - Atam P.Dhawan, "Medical Image Analysis", Wiley Interscience Publication, NJ, USA 2003. T2. - R.C.Gonzalez and R.E.Woods, "Digital Image Processing", Second Edition, Pearson Education, 2002. R1. - R2. Anil. K. Jain, "Fundamentals of Digital Image Processing", Pearson education, Indian Reprint 2003 - Alfred Horowitz, "MRI Physics for Radiologists A Visual Approach", Second edition, Springer Verlag Network, 1991. EEE - HICET